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Abstract. Text-conditioned video diffusion models have emerged as a
powerful tool in the realm of video generation and editing. But their abil-
ity to capture the nuances of human movement remains under-explored.
Indeed the ability of these models to faithfully model an array of text
prompts can lead to a wide host of applications in human and character
animation. In this work, we take initial steps to investigate whether these
models can effectively guide the synthesis of realistic human body anima-
tions. Specifically we propose to synthesize human motion by deforming
an SMPL-X body representation guided by Score distillation sampling
(SDS) calculated using a video diffusion model. By analyzing the fidelity
of the resulting animations, we gain insights into the extent to which we
can obtain motion using publicly available text-to-video diffusion models
using SDS. Our findings shed light on the potential and limitations of
these models for generating diverse and plausible human motions, paving
the way for further research in this exciting area.

Keywords: Diffusion models · Human motion generation · Digital Hu-
mans

1 Introduction

Video generative models [8, 14, 30, 48, 57, 59] have been shown and claimed to
be potential tools for simulating the world. Recent advancements, such as those
demonstrated by [30], highlight the capabilities of video diffusion models trained
on vast datasets to generate realistic and diverse visual content. These impressive
capabilities inspired us to question the potential of open-source counterparts for
the specific task of generating human motion animations from natural language
input. We sought to determine if the current state-of-the-art open-source models
can be used with score distillation to generate human motion effectively.

Human motion generation from textual instructions is a well-studied do-
main [18,33,54,55], with recent methods often involving diffusion models trained
on motion capture (MoCap) data [46,55]. However, the scarcity of MoCap data
compared to the abundance of video data presents a scalability challenge. Ex-
tracting animation directly from videos, mirroring the success seen in 3D asset
generation [11,24,29,60], represents an ambitious yet necessary goal.

We define our problem as determining the correct sequence of joint rota-
tions necessary to produce realistic human motion described by a prompt. To
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Fig. 1: Human motion sequence resembling running generated using text-to-video
model. The figure illustrates that the current video models can generate realistic mo-
tion for commonly occuring human activity such as running

achieve this, we utilize the widely adopted SMPL-X [32] digital human template
model to render a character. This character is animated through an optimiza-
tion process that iteratively updates a multi-layer perceptron (MLP) to predict
the corresponding pose parameters. We guide this optimization process using a
video diffusion model, which provides feedback on the realism of the generated
motion.

As shown in Figure 1, these models demonstrate a proficiency in generating
animations for common actions such as running. However, when tasked with
depicting uncommon or rare human movements, their performance under score
distillation reveals limitations. While they can produce visually appealing re-
sults for familiar actions, their ability to capture the nuances of less frequent
movements remains a challenge. Our main contributions are as follows:

– We propose a differentiable video generation pipeline: MotionDistill that
leverages text-to-video diffusion models to generate human motion.

– We conduct an evaluation of ModelScope [59], ZeroScope [6], and VideoCrafter
[7, 8]’s capabilities in generating both common and uncommon human mo-
tion.

– We ablate our analysis to the latent space of these models to test the effec-
tiveness of SDS

2 Related Works

Diffusion models in content creation: Recent advances in text-to-image
[40, 43] foundation models [4] have catalyzed exploration into their application
for three-dimensional (3D) asset synthesis [50] and editing [62]. Early works, par-
ticularly with CLIP [38]-based models , leveraged joint image-text embeddings
to generate 3D assets directly from text prompts [17,18,29,44,58,61]. However,
the emergence of diffusion models [9,51] and the introduction of SDS [37] marked
an important shift. SDS enabled the extraction of 3D assets [11,24,37,53,60] as
NeRFs [28], Meshes [5, 23, 47] and Gaussian splats [19]. [49] integrated a tem-
poral dimension, facilitating the generation of animated 2D [10] and 3D assets
from video diffusion models. [3,25,63], introduced hybrid SDS methodologies and
alternative representations like Gaussian splattings [25] to enhance the fidelity
and motion quality of generated assets. However, these approaches focused on
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open-ended generation and did not specifically address the potential of video
models to generate diverse human motions.
Text to Human motion generation: The generation of human motion guided
by textual descriptions is a well-established area of research. Initial approaches
explored to model it as machine translation [1, 36] and joint cross-modal map-
pings [2,12] to address this challenge. Subsequent works leveraged motion capture
datasets [27,35] to train models capable of generating human motion as sequences
of poses. Variational Autoencoders (VAEs) [21] were employed in [13, 34]. The
concept of a shared latent space with CLIP [38] was introduced in [54]. Human
motion diffusion model [55] pioneered the application of diffusion-based mod-
eling to human motion generation, enabling ancestral sampling in the motion
space, which subsequently led to the utilization of SDS [37] in [46] for gener-
ating extended motion sequences. These prior methods are limited by motion
capture data, operating solely in the rotation space. Our approach ventures into
the pixel space models, exploring their potential in motion generation.

3 Background

Human template models - SMPLx: The Skinned Multi-person Linear(SMPL)
[26, 32, 41, 45] family of models comprises articulated human body models pa-
rameterized by the shape and pose parameters. Among these, We use SMPLx
because of its comprehensive representation of the human body. It is defined by
the function M(θ, β, ϕ) : R|θ|×|β|×|ψ| → R3N [32] given by Equation 1.

M(β, θ, ψ) = LBS(Tp(β, θ, ψ), J(β), θ,W) (1)

This function takes body parameters as input, performs linear blend skinning,
and outputs a mesh with N = 10, 475 vertices. Here θ ∈ R3(K+1) denotes the
body pose parameters, β ∈ R|β| denotes the shape parameters and ψ ∈ R|ψ|

denotes the facial expression parameters. W is the skinning weights and J is the
joint regressor. The pose parameters θ can be further divided into θb (body joints
pose), θf (jaw pose) and θh (finger pose). While SMPLx accounts for K = 54
body joints, our approach optimizes only the major body joints Kb = 21 focusing
exclusively on θb to constraint our scope. The template body Tp(β, θ, ψ) is given
by Equation 2. Here T̂ is the template mesh, BS , BE , BP denotes the blend
shape functions corresponding to shape, expression, and pose.

Tp(β, θ, ψ) = T̄ +BS(β;S) +BE(ψ; E) +BP (θ;P) (2)

Score Distillation Sampling: Score Distillation Sampling (SDS) [37] is a
method employed to leverage large-scale diffusion models [15, 51] for training
compact parametric image generators. It utilizes the score function [52] of the
diffusion model to derive gradient directions for updating the generator, itera-
tively aligning it with provided textual prompts. Our formulation of SDS slightly
deviates from the original by employing a latent diffusion model [39].Given a
pre-trained latent diffusion model ϕ with its denoising UNet ϵ̂ϕ(zt; y, t) [42], text
prompt y and an image generator parameterized by θ. The gradients needed to
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Fig. 2: Our study consists of two stages. Stage:1 (top) Joint rotations required to
animate the character are generated using PoseField. Passed through SMPLx Layer to
get the final mesh which is then rasterized using a differentiable renderer. We use a
random camera and a predetermined texture. This is repeated for F frames to obtain
the video. Stage:2 (bottom) Rendered video is encoded to the latent space of the
diffusion model then random noise is added to the latent. Unet of the Video model is
used to predict the added noise and the gradients are estimated by SDS.

update the generator are obtained by Equation 3. Here t is the randomly sam-
pled diffusion timestep, and ϵ is the randomly generated noise. z is the generated
image encoded to the latent space of the diffusion model and zt is the noised
image and w(t) is a weighting function. [39,51].

∇θLSDS(ϕ, z) = Et,ϵ[w(t)(ϵ̂ϕ(zt; y, t)− ϵ)
∂z

∂θ
] (3)

4 Method

In this section, we detail our proposed methodology. The central challenge we
address is as follows:

Given a text prompt y describing an action, we aim to determine the optimal
joint rotations θb for each frame {θb1 , θb2 , ...}F of an F -framed video that aligns
with the given prompt. To tackle this, we model the rotations implicitly using a
neural network "PoseField" Pα : τ → θb parameterized by α. It is a Multi-Layer
Perceptron (MLP) comprising two hidden layers. This network takes the frame id
τ as input and outputs the corresponding body pose parameter θb. Consequently,
our task shifts from finding the optimal rotation set to determining the optimal
parameters α∗ of the network Pα.
As illustrated in Figure 2, our approach employs a two-stage process.
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1. Video generation: We utilize a differentiable pipeline to synthesize a video
of the animation sequence.

2. Gradient Estimation: We leverage video diffusion models to estimate gra-
dients for updating the PoseField parameters.

4.1 Stage 1: Generating multi-view video of the animation sequence

In this stage, we generate the video of the animation sequence frame by frame
and subsequently concatenate these frames to form a complete video. We encode
the frame identifier τ with positional encoding [56] and infer the PoseField Pα
to obtain the SMPL-X body pose parameter θb = Pα(τ) corresponding to the
current frame. Using this, we derive the mesh M(β, [Pα(τ),θf ,θh],ψ). It is
important to note that only α is the trainable parameter here, while all other
values are reused across frames and training iterations. We render the character
from a randomly selected camera position sampled from a circular trajectory
around the mesh. Given the camera trajectory C and the rendering function
R, we obtain the projection matrix π and render the current frame as Iα =
R(π(M)). This process is repeated for F frames, generating a series of frames
I1, I2, . . . , IF . We concatenate these frames to obtain the video Vα from a certain
view that will be used as input to the next stage for gradient estimation.
4.2 Stage 2: Estimating gradients for update

The generated video is then used to estimate the gradient using Score Distillation
Sampling (SDS) [37]. We employ the temporal variation of SDS as proposed
in [49]. Since we use Latent Diffusion Models, we first encode the video to the
latent space of the video diffusion model: Zα = E(Vα). We then add noise to the
video latent according to the noise schedule: Z(α,σ,ϵ) =

√
1− σ2Zα + σϵ, where

ϵ is randomly generated noise and σ ∈ (0, 1) is the noise level. Gradients are
then computed by Equation 4. Here λSDSt

is a hyperparameter that controls
the effect of SDS.

∇θLSDS−T = λSDSt
Eσ,ϵ[w(σ)ϵ̂(Zα,σ,ϵ|y, σ)− ϵ)

∂Zα
∂α

] (4)

Regularization: To encourage smoothness in the generated motion, we intro-
duce a regularization constraint. We add the following loss term, which mini-
mizes the difference between the body poses of consecutive frames. Here λreg is
a regularization coefficient.

Lreg = λreg

F−1∑
i=1

(θbi+1
− θbi) (5)

SDS from Stable diffusion model: Following recent works [3,25,49] and con-
sidering the fact that video diffusion models often lack visual quality compared
to their image counterparts, we additionally estimate gradients using the stan-
dard SDS with an Image Diffusion Model. We treat each video as a batch of
images and calculate the gradients using Equation 3.
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Fig. 3: Our results for different motions: All results are obtained by using the
model VideoCrafter [8]. (i) Walking motion is one of the best cases in addition to
running (Fig:1). (ii) Punching is a semi-failure case (iii) Cartwheel is an extreme failure
case.
5 Experiments and results
Evaluating MotionDistill: Figure 3 showcases the capabilities of our method
across various prompts. Our approach excels at generating plausible motion for
common human activities, as demonstrated by the "walking" and "running"
examples (Figure 3(i) and 1). However, challenges arise with less frequent actions.
The "punching" prompt (Figure 3(ii)) resulted in partial motion generation,
with limited hand movement. This shows for a semi-failure case. Furthermore,
the model struggles with uncommon activities like "doing a cartwheel" (Figure
3(iii)), failing to produce even a reasonable pose giving the extreme failure case
3.
Ablating MotionDistill: It is challenging to determine if the failure cases
comes from the SDS, the faithfulness of the video diffusion model, or the way
we’re representing motion and render it To gain deeper insights into the ability
of SDS and our video models to produce faithful motion, we optimize our SDS
objective with the video diffusion model directly in their video latent space. We
first render the initial video using Stage 1 of our pipeline. Then detach this
rendering from the optimization process and directly optimize the latents Z.
The results are shown in Figure 4.

Our experiments reveal performance discrepancies among three open-source
video diffusion models, particularly concerning the generation of common versus
rare human motions. This suggests a potential bias towards common activities
in the training data. To illustrate this, we used two prompts for all three mod-
els: "running" (a common action) and "punching" (less frequent). As shown in
Figure 4, the models generated more natural motion sequences for "running."
In contrast, the "punching" frames lacked variation, highlighting the limitations
3 Check supplementary video at https://github.com/Pauljanson002/human-eccv for

sample clips

https://github.com/Pauljanson002/human-eccv
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Fig. 4: Visualization of the optimized latent when given the two actions as prompts.
Generated videos in the top row of each video model denote the action "running". The
bottom row of each denotes the action "punching". Clearly, the top rows of each model
show a more natural motion. VideoCrafter [8] demonstrates a higher degree of realism
in both actions compared to other models
of all three models with less common motions. We also observed that recent
models [8] provide a much more realistic motion than older models [6, 59]. This
is evident, if we compare the top rows of each model, ModelScope [59] seems to
have very little variation across frames even for "running". Indeed we observe
when the model has challenges with the latent generation it also struggles in the
case of fitting PoseField, suggesting the issue lies not in the representation of
the body motion but in the video diffusion model.
Implementation details: We implemented the pipeline in PyTorch [31] and
used nvdiffrast [22] for differentiable rendering. We conducted experiments in
NVIDIA A6000 GPU. We used Adam [20] optimizer with a learning rate of 5e-4
for 10,000 iterations. Experiments maintained a CFG [16] scale of 100. We initial-
ized the PoseField to output the mean pose of the target motion and constrained
its output within a range defined by three times the standard deviation of the
target pose parameters. We set total frames F=10, λreg=1e-3 , λSDSt=1e-3.
6 Conclusion
Video diffusion models can generate human motion from text, but their per-
formance differs a lot between familiar and rare actions. Notably, more recent
models like VideoCrafter2 [8] outperform earlier ones [6,59]. These findings un-
derscore the need for further research to improve the diversity and quality of
human motion generation, particularly for less frequent or complex actions. We
hypothesize that our method when combined with more powerful text-to-video
foundation models can become increasingly more effective. Our work stands as
proof of concept in this domain and studies the strengths and limitations of
current open-source video diffusion models. Additionally, studying human mo-
tion understanding as an emergent behavior of a video diffusion model will be a
promising future direction.
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